NTC負(fù)溫度系數(shù)熱敏電阻專業(yè)術(shù)語
零功率電阻值 RT(Ω)
RT指在規(guī)定溫度 T 時(shí),采用引起電阻值變化相對于總的測量誤差來說可以忽略不計(jì)的測量功率測得的電阻值。
電阻值和溫度變化的關(guān)系式為:
RT = RN expB(1/T – 1/TN)
RT :在溫度 T ( K )時(shí)的 NTC 熱敏電阻阻值。
RN :在額定溫度 TN ( K )時(shí)的 NTC 熱敏電阻阻值。
T :規(guī)定溫度( K )。
B : NTC 熱敏電阻的材料常數(shù),又叫熱敏指數(shù)。
exp :以自然數(shù) e 為底的指數(shù)( e = 2.71828 …)。
該關(guān)系式是經(jīng)驗(yàn)公式,只在額定溫度 TN 或額定電阻阻值 RN 的有限范圍內(nèi)才具有一定的精確度,因?yàn)椴牧铣?shù) B 本身也是溫度 T 的函數(shù)。
額定零功率電阻值 R25 (Ω)
根據(jù)國標(biāo)規(guī)定,額定零功率電阻值是 NTC 熱敏電阻在基準(zhǔn)溫度 25 ℃ 時(shí)測得的電阻值 R25,這個(gè)電阻值就是 NTC 熱敏電阻的標(biāo)稱電阻值。通常所說 NTC 熱敏電阻多少阻值,亦指該值。
材料常數(shù)(熱敏指數(shù)) B 值( K )
B 值被定義為:
RT1 :溫度 T1 ( K )時(shí)的零功率電阻值。
RT2 :溫度 T2 ( K )時(shí)的零功率電阻值。
T1, T2 :兩個(gè)被指定的溫度( K )。
對于常用的 NTC 熱敏電阻, B 值范圍一般在 2000K ~ 6000K 之間。
零功率電阻溫度系數(shù)(αT )
在規(guī)定溫度下, NTC 熱敏電阻零動功率電阻值的相對變化與引起該變化的溫度變化值之比值。
αT :溫度 T ( K )時(shí)的零功率電阻溫度系數(shù)。
RT :溫度 T ( K )時(shí)的零功率電阻值。
T :溫度( T )。
B :材料常數(shù)。
耗散系數(shù)(δ)
在規(guī)定環(huán)境溫度下, NTC 熱敏電阻耗散系數(shù)是電阻中耗散的功率變化與電阻體相應(yīng)的溫度變化之比值。
δ: NTC 熱敏電阻耗散系數(shù),( mW/ K )。
△ P : NTC 熱敏電阻消耗的功率( mW )。
△ T : NTC 熱敏電阻消耗功率△ P 時(shí),電阻體相應(yīng)的溫度變化( K )。
熱時(shí)間常數(shù)(τ)
在零功率條件下,當(dāng)溫度突變時(shí),熱敏電阻的溫度變化了始未兩個(gè)溫度差的 63.2% 時(shí)所需的時(shí)間,熱時(shí)間常數(shù)與 NTC 熱敏電阻的熱容量成正比,與其耗散系數(shù)成反比。
τ:熱時(shí)間常數(shù)( S )。
C: NTC 熱敏電阻的熱容量。
δ: NTC 熱敏電阻的耗散系數(shù)。
額定功率Pn
在規(guī)定的技術(shù)條件下,熱敏電阻器長期連續(xù)工作所允許消耗的功率。在此功率下,電阻體自身溫度不超過其最高工作溫度。
最高工作溫度Tmax
在規(guī)定的技術(shù)條件下,熱敏電阻器能長期連續(xù)工作所允許的最高溫度。即:
T0-環(huán)境溫度。
測量功率Pm
熱敏電阻在規(guī)定的環(huán)境溫度下, 阻體受測量電流加熱引起的阻值變化相對于總的測量誤差來說可以忽略不計(jì)時(shí)所消耗的功率。
一般要求阻值變化大于0.1%,則這時(shí)的測量功率Pm為:
電阻溫度特性
NTC熱敏電阻的溫度特性可用下式近似表示:
式中:
RT:溫度T時(shí)零功率電阻值。
A:與熱敏電阻器材料物理特性及幾何尺寸有關(guān)的系數(shù)?!?br />
B:B值。
T:溫度(k)。
更精確的表達(dá)式為:
式中:RT:熱敏電阻器在溫度T時(shí)的零功率電阻值。
T:為絕對溫度值,K;
A、B、C、D:為特定的常數(shù)。
熱敏電阻的電阻-溫度特性可近似地用式1表示。
(式1) R=Ro exp {B(I/T-I/To)}
R | : 溫度T(K)時(shí)的電阻值 |
Ro | : 溫度T0(K)時(shí)的電阻值 |
B | : B 值 |
*T(K)= t(ºC)+273.15 |
但實(shí)際上,熱敏電阻的B值并非是恒定的,其變化大小因材料構(gòu)成而異,最大甚至可達(dá)5K/°C。因此在較大的溫度范圍內(nèi)應(yīng)用式1時(shí),將與實(shí)測值之間存在一定誤差。
此處,若將式1中的B值用式2所示的作為溫度的函數(shù)計(jì)算時(shí),則可降低與實(shí)測值之間的誤差,可認(rèn)為近似相等。
(式2) BT=CT2+DT+E
上式中,C、D、E為常數(shù)。
另外,因生產(chǎn)條件不同造成的B值的波動會引起常數(shù)E發(fā)生變化,但常數(shù)C、D 不變。因此,在探討B(tài)值的波動量時(shí),只需考慮常數(shù)E即可。
• 常數(shù)C、D、E的計(jì)算
常數(shù)C、D、E可由4點(diǎn)的(溫度、電阻值)數(shù)據(jù) (T0, R0). (T1, R1). (T2, R2) and (T3, R3),通過式3~6計(jì)算。
首先由式樣3根據(jù)T0和T1,T2,T3的電阻值求出B1,B2,B3,然后代入以下各式樣。
• 電阻值計(jì)算例
試根據(jù)電阻-溫度特性表,求25°C時(shí)的電阻值為5(kΩ),B值偏差為50(K)的熱敏電阻在10°C~30°C的電阻值。
• 步 驟
(1) 根據(jù)電阻-溫度特性表,求常數(shù)C、D、E。
To=25+273.15 T1=10+273.15 T2=20+273.15 T3=30+273.15(2) 代入BT=CT2+DT+E+50,求BT。
(3) 將數(shù)值代入R=5exp {(BTI/T-I/298.15)},求R。
*T : 10+273.15~30+273.15
• 電阻-溫度特性圖如圖1所示
所謂電阻溫度系數(shù)(α),是指在任意溫度下溫度變化1°C(K)時(shí)的零負(fù)載電阻變化率。電阻溫度系數(shù)(α)與B值的關(guān)系,可將式1微分得到。
這里α前的負(fù)號(-),表示當(dāng)溫度上升時(shí)零負(fù)載電阻降低。
散熱系數(shù)(δ)是指在熱平衡狀態(tài)下,熱敏電阻元件通過自身發(fā)熱使其溫度上升1°C時(shí)所需的功率。
在熱平衡狀態(tài)下,熱敏電阻的溫度T1、環(huán)境溫度T2及消耗功率P之間關(guān)系如下式所示。
產(chǎn)品目錄記載值為下列測定條件下的典型值。
(1) | 25°C靜止空氣中。 |
(2) | 軸向引腳、經(jīng)向引腳型在出廠狀態(tài)下測定。 |
在額定環(huán)境溫度下,可連續(xù)負(fù)載運(yùn)行的功率最大值。
產(chǎn)品目錄記載值是以25°C為額定環(huán)境溫度、由下式計(jì)算出的值。
(式) 額定功率=散熱系數(shù)×(最高使用溫度-25)
最大運(yùn)行功率=t×散熱系數(shù) … (3.3)
這是使用熱敏電阻進(jìn)行溫度檢測或溫度補(bǔ)償時(shí),自身發(fā)熱產(chǎn)生的溫度上升容許值所對應(yīng)功率。(JIS中未定義。)容許溫度上升t°C時(shí),最大運(yùn)行功率可由下式計(jì)算。
指在零負(fù)載狀態(tài)下,當(dāng)熱敏電阻的環(huán)境溫度發(fā)生急劇變化時(shí),熱敏電阻元件產(chǎn)生最初溫度與最終溫度兩者溫度差的63.2%的溫度變化所需的時(shí)間。
熱敏電阻的環(huán)境溫度從T1變?yōu)門2時(shí),經(jīng)過時(shí)間t與熱敏電阻的溫度T之間存在以下關(guān)系。
T= | (T1-T2)exp(-t/τ)+T2......(3.1) |
(T2-T1){1-exp(-t/τ)}+T1.....(3.2) |
(1) | 靜止空氣中環(huán)境溫度從50°C至25°C變化時(shí),熱敏電阻的溫度變化至34.2°C所需時(shí)間。 |
(2) | 軸向引腳、徑向引腳型在出廠狀態(tài)下測定。 |
另外應(yīng)注意,散熱系數(shù)、熱響應(yīng)時(shí)間常數(shù)隨環(huán)境溫度、組裝條件而變化。
NTC負(fù)溫度系數(shù)熱敏電阻R-T特性
B 值相同, 阻值不同的 R-T 特性曲線示意圖
相同阻值,不同B值的NTC熱敏電阻R-T特性曲線示意圖